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Outline of this Talk

B Brief introduction to Casimir physics

@ Basic theory
Q@ Modern experiments

Q@ Lifshitz formula and scattering theory

B Theory-experiment comparison

@ Electrostatic calibration, residual force measurement
Q@ Comparing theory and experiment

B Electrostatic patch effects

Q@ Systematic effect relevant to various experiments
@ Estimating patch effects

@ Measuring patch distributions

@ What does it say for Casimir force experiments
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Introduction: a force from nothing
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The Casimir force

Q@ The Casimir effect is a universal effect from
confinement of vacuum fluctuations: it depends
only on 7, ¢ and geometry
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@ It can also be interpreted as arising from e T o
fluctuations of charges and currents ¢ at | -~
- ‘ " - . . - b
within the materials S oY
- s 3 - e

Q@ The magnitude and sign of the force depends on geometry,
material composition, and temperature
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Modern experiments

B Torsion pendulum B Atomic force microscope
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Lifshitz formula - Scattering theory

Lifshitz formula (1956) - Casimir interaction energy between two slabs

E(d) 42k T
A h;/O / 7 o0t (2k3T> Im log[1 — Ry ,(w, k) Rap(w, k) ¥V /=M

k. — e(w)w?/c? — k? e(w)k, — v/e(w)w?/c? — k2

Fresnel reflection coefficients Rrg = Rrym =

k. +ve(w)w?/c — k?  e(w)ks + Velw)w?/c? — k2
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Lifshitz formula - Scattering theory

Lifshitz formula (1956) - Casimir interaction energy between two slabs

E(d) 42k Y
A h;/o / 7 o0t (QkBT) Im log[1 — Ry ,(w, k) Rap(w, k) ¥V /=M

k. — e(w)w?/c? — k? e(w)ks — Velw)w? /e — k2
k. +ve(w)w?/c — k? e(w)k, + v/e(w)w?/c? — k?

Fresnel reflection coefficients Rrg =

The log factor can be re-written as

> 1
1dk idk,1n
E , E 1,p € Rop € ]

Scattering theory for Casimir effects
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Going to imaginary frequencies

Im ® =Re &

The function coth(Aw/2kpT) has poles on the

imaginary frequency axis at \C
. 27Tk B T ¢ \\\___._
Wi = %6m » E&m =m
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C,
After Wick rotation: S

Rl,p(ifm, ]C)Rz,p (ifmy k)t‘i_Qd\/gm/CQ-i—k2

F < [ d%k
= —2kpT Y ) / ) NGRS

p m=0

1 — Ry p(i&m, k) Rap (i, k)e 20V Em/c*+k?
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Casimir physics is a broad-band frequency phenomenon
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Going to imaginary frequencies

The function coth(Aw/2kpT) has poles on the
imaginary frequency axis at

wmzzgm 9 fm:m

After Wick rotation:

Im ® =Re &

Fory S

p m=0

(

d’k
sz VEIE TR

Rl,p(ifm, k>R2aP (ifmy k)B_Qd\/gm/@-l-kQ

1 — Ry p(i&m, k) Rap (i, k)e 20V Em/c*+k?

(i) = 1-|—%

o0 14
/ w2€ ) dw
0 w?+&?

Kramers-Kronig (causality)

Casimir physics is a broad-band frequency phenomenon

Some limiting cases:

Foxd?
Foxd™?

(non-retarded limit, small distances)
(retarded limit, larger distances)

F o< Td™° (classical limit, very large distances)
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How are these forces measured?
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Torsional pendulum

Experiment by Lamoreaux group (Yale)

@ Sphere-plane geometry: R=:15:1 ¢
d~1pum

@ Torsional pendulum (modern Cavendish-like)

Piezoelectric Transducer
et with Strain Gauge
Computer
Control 7
—] XYZ

Positioner

Pivot/Suspension Pomnt
(pendulum grounded
through torsion wire)

77

DC BiasVoltage
(from Computer DAC)

Capacitance Brnidge Force (Voltage)
and PID DC Feedback =" 01¢¢ L Y Olfagc)
to Computer AD(

Network
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Typical Casimir measurement

Sp1p(d, Va) = Sae(d — 00) + Sa(d, V) + S,(d)

Z

i\

force-free component of
signal at large separations

electrostatic signal in
response to an applied
external voltage

AN

residual signal due to
distance-dependent
forces, e.g. Casimir

The electrostatic signal between the spherical lens and the plate, in PFA (d < R)is

S.(d,V,) = meoR(V, — V)2 /Bd

This signal is minimized (S, = 0) when V, = V,;, , and the electrostatic minimizing

16 force-voltage conversion factor

potential V,,, is then defined to be the contact potential between the plates.
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“Parabola’” measurements

Calibration routine -0.29 I l
s
A range of plate voltages V/, is applied, and ~ 0295 E T i i
at a given nominal absolute distance the 2 L A
' a' 03F N ) rr -
response is fitted to a parabola \I / ¢
d) \ ‘t}/

-0.305 :
-0.2 -o.| 0 0.1 0.2

Applied Potential (V)

Spin(d,V,) = So + k(V, — V,,)?

Fitting parameters

k = k(d) —> voltage-force calibration factor + absolute distance
Vin = Vin(d) —> distance-dependent minimizing potential
So = Sp(d) =—> force residuals: patch potentials + Casimir + non-Newtonian gravity + ....
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Metals are not equipotentials

@ Despite what we have learned in freshman physics!

(100) 5.47 eV
(110) 5.37 eV
(1) 531 eV

@ Different crystal faces have different work functions

@ Dirt: oxides, surface adsorbates strongly affect work function and
surface potential by creating dipoles on the surface.

A

Resulting potential variation /"\ 'l-\ 1\
. —
across a surface: /\? /\_

x
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Modeling patch potentials

To compute the patch effect in the sphere-plane
configuration we use PFA for the curvature effect

(d < R) but leave kd arbitrary

R 0 k2 —kd :
F,,(d) = 2rR(U,,(d)) = L= / dk ———— [Cix+ Ca] ViV (z,y,z) =0
0

16 sinh(kd)
V(z=0)=Vi(z,79)

(V1) = (Vo,x) = (Vo,kV1,1r) = 0;
Statistical properties for patch potentials: (ViaVik) = Cix 6%(k — K'):
(Vax Vo) = Cax 6%(k — k'),

2
In the limit of large patches (kd < 1): Fop(d) = meoR Vrcxlns
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Thermal Casimir force

500

gray band: theo. uncertainty < 3%

/ wp = 6.85 —9.0eV

v = 0.02 - 0.061 eV

X12'cd = 1.04

Force x separation? (pN x um?)

200~: Thermal Casimir force
] : (T) §(3)RkgT 2
100 : : 1 e = S = 97pN pm
0 ] 1

0.7 1 2 3 4 5 6 7 8
Plate separation (um)

ARTICLES nanue,
PUBLISHED ONLINE: 6 FEBRUARY 2011 | DOE 100038 /NPHYS1909 thSICS

Observation of the thermal Casimir force

A. O. Sushkov'*, W. J. Kim?, D. A. R. Dalvit® and S. K. Lamoreaux’
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Tailoring Casimir with nanostructures
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The sign of the Casimir force

F By (i€, k) Ro p (i, k) =24V Em/2HH2

. [ d’k
L okyT / NGRS
A Z Z (27’(’)2 1 — lep(’ifm, k)RQ,p(iéjm; k>e—2d\/§m/02—|—k2

p m=0

The sign of the force is directly connected to the sign of the product of
the reflection coefficients on the two plates, evaluated at imaginary
frequencies. As a rule of thumb, we have (p=TE,TM)

Ry ,(i&m, k) Ra p(i&m, k) > 0 = Attraction
R1 ,(i&m, k) Ro p(1€, k) < 0 = Repulsion

In terms of permittivities and permeabilities:

€q (Zf) =>> €y (Zf)

—> Repulsion
b (Zf) > Ha (Zﬁ)
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|deal attraction-repulsion

B |deal attractive limit
Casimir (1948) : :
P w he
A 240 ¢4
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|deal attraction-repulsion

B |deal attractive limit

Casimir (1948)

F

A

2 he

240 d*

B Ideal repulsive limit

Boyer (1974)

|

7T2 C

240 d4

0|
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|deal attraction-repulsion

B ldeal attractive limit
Casimir (1948) : 5
F__m he
A 240 d*
B Ideal repulsive limit
Boyer (1974)
T he < =>
-8 240 d4

B Real repulsive limit
Casimir repulsion is associated with strong
electric-magnetic interactions. However, natural
occurring materials do NOT have strong
magnetic response in the optical region,i.e. u =1

|
00|~
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|deal attraction-repulsion

B ldeal attractive limit
Casimir (1948) : 5
F__m he
A 240 d*
B Ideal repulsive limit
Boyer (1974)
T he < =>
-8 240 d4

B Real repulsive limit
Casimir repulsion is associated with strong

electric-magnetic interactions. However, natural —5 Metamaterials
occurring materials do NOT have strong

magnetic response in the optical region,i.e. u =1

|
00|~
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uantum levitation with MMs?

Physicists have 'solved' mystery of levitation - Telegraph
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Metamaterials

@ Artificial structured composites with designer electromagnetic properties

@ MMs are strongly anisotropic, dispersive, magneto-dielectric media

B Negative refraction Veselago (1968), Smith et al (2000)
@ Perfect lens

Pendry (2000)
® Cloaking Smith et al (2007)
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Effective medium approximation

|

Imagine that the MM is probed at wavelengths Eggj
much larger that the average distance between Eﬂggggjj
the constituent “particles” of the MM. %gggggjj
Hiiians
In this situation the MM is effectively a continuous [
medium, whose optical response can be EDBBEEEE
characterized by an effective electric permittivity and %%EEEEEE
an effective magnetic permeability. @Ejﬁ
B!
w’ —w;
—=1-— P70
e(@) w’ —w; +iol
-
oy = 1=

A S W
Wiy 7° pow=Cre

Tuesday, June 10, 2014




EMA: Drude-Lorentz responses

Close to the resonance, both ¢(w)and ©(w) can be modeled
by Drude-Lorentz formulas

Typical separations

QQ
ca(w) =1 — 552 d = 200 — 1000 nm
w* —wp , + I'p qw
0?2 %
fo(w) =1 — e Infrared-optical frequencies

Q/27 =5 x 10" Hz

] QE’Q/Q = 0.1 QM’Q/Q =0.3
WE,Q/Q = CL)M’Q/Q = 0.1

0 - —

1

2 ] Re & (o). I'go/QY=Tp2/Q=0.01
3k _

0

0.0 0.5 1.0 L5 20 Noo 005 0.10 0.15 020

(D/QE’I w/Q
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Attraction-repulsion crossover

10

| T/Q=0.01
-1 ['/Q2=0.0

Ideal repulsion
L SR |

8,
~ I~
o] n <

6
& £/
< Drude metals (Au) < I/Q=0.1
~ 4r — ~—
F— s

0.5+
2 _
L TV “0 Yo ~i00

d (nm)
Only attraction

d (nm)
Only attraction

100

d (nm)

Repulsion-attraction
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EMA: correct model for u

Drude-Lorentz for permeability is wrong. The correct expression that
results in EMA from Maxwell’s equations is

-
W

w2 — w3, + 2iymw

The appearance of the w? factor in the numerator is very important:

Although close to the resonance this
behaves in the same way as the Drude-
Lorentz EMA permeability, it has a

completely different low-frequency P
behavior ocor|

e (i€) < 1< (i) ==

Fd'AIhcA

No Casimir repulsion! "
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Other Casimir MMs: chirality

The chirality of a MM is defined by the chirality of its unit cell

-

(@) 150 (b)

—= RWR R
= VR R
10 VR R«

T al PRI

rAS ), R

b Stetelel s S
15 mm > 1L.6mm 15x 15 mm?

In a chiral medium, the constitutive relations mix electric and magnetic fields

D(r,w) = e¢(w)E(r,w) —ik(w)H(r,w)
B(r,w) = ik(w)E(r,w) + p(w)H(r, w)

Wrw

dispersive chirality: r(w) = w2 — ng + 1YW
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Repulsion and chiral MMs

In chiral MMs the reflection matrix is non-diagonal (mixing of E and H fields).

The integrand of the Casimir-Lifshitz force between two identical chiral MMs

has the form:

no re, + 15, — 2r5 )e 2% % — 2(r2 ) + roarpp)ie— 11 e
g 2 bl 0.2 Vor2Kd ) Ted Ve ao A0k
1 — \Tss e I;)}) 2 2, 5‘[")(’- ikl ¢ (,;\‘p < ,SH,['I[) ) € \‘
r)x104
One might achieve repulsive Casimir ‘
forces with strong chirality (i.e., large .
values of 7'sp) .
4]
£ 5
. . . . j ;',\W
Same-chirality materials: repulsion : waryT™
10} el 0 =096
Opposite-chirality materials: repulsion ¥ 0, =098
0 ! g‘ o, 1.00

-15

k.d

However, EMA breaks down here!
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Going beyond EMA

So far, we have treated the MM in the “long-wavelength approximation”, i.e.,
field wavelengths much larger than the typical size of the unit cell of the MM.

How to calculate Casimir forces when EMA does not hold?
Can one trust predictions of Casimir repulsion with MMs based on EMA!?

Homogeneous Non-homogeneous
medium medium

0 6666666606600060
1 66666060000
1 6666666660

0 66666666
0 666666666

EMA beyond EMA
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Casimir nanostructures

| €Y €LY
> fefe;

k, N
{ ) \ h Y |
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Scattering theory

hs
~

~th

)
)
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S
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S

The Casimir force still may be described

in terms of reflections (scattering theory)

vV VvVVYTVYVYVYVYVYVYVYVY"

1222322222222
222222222222
k 1222222222222
1222222222222
1222222222222
1222222222222
1222222222222
1222222222222
1222222222222
1222222222222

0000000006000«
000000000000«
0000000000600
0000000006000«
k 000000000000«
0000000000600
666000000l
2233333338238

Ri(wa k7 klapap,)

Symbolically, we may write the Casimir energy as

A

27

E o
(d) = h/ @ log det |1 — Rle_’Cnge_’Cd}
0

N 1 . — ) - — §)1n
< Y~ [Ra(i€)e” TUORy (ig)e U]
n=1
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Solving for the reflection matrix

The reflection matrix can be obtained with standard methods of numerical
electromagnetism. One way is to solve Maxwell equations for the
transverse fields

OF
—ikait = Vi [X§3 -V X Ht] — kQ,u§3 x H;
<
OH
~ik— L= Vv, [¢e3  V x By] + k2eé5 x Eq
zZ

Assuming a two-dimensional periodic structure, we have

: 27N 2mm
_ tk-r . .
Ei(z,y) =e ;Sm,n exp [z T T +1 L, Y

. 2m™n 2m™m
H,(z,y) = ™" ZHm,n exp [z 7 +1 7Y
m,n x Y

)

21N 2mm
e(z,y) = Zem,n exp [z 72 + i 7 y]
@ Y

where m,n ) )
p(z,y) = n;lum,n eXp [Z z—j-:x + 2 ZTy]
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Exact reflection matrix

One can then write the equations for the transverse fields as

- 7 B2
P ggm \Ugm
m’n’ Emn W
—ik Z m n’,mn\Ijm”l Win = HE — ng
mn @nn Zm
| Emn 1 I v |

Here H is a complicated matrix, that encapsulates the coupling of modes in
the periodic structure.

By numerically solving this equation and imposing the proper boundary
conditions of the field on the vacuum-metamaterial interphase (RCWA or
S-matrix techniques), one can find the reflection matrix of the MM.
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2D periodic structures

Casimir force between a Au plane and Si pillars/grating/membrane @ T=300 K

L \ J | | | | | | | | L
N A e ]
00 1.7¢ foitars = 1/4 :
\ 1.60 _________________ 7
[ » \ [ . T S ]
‘ et . — -
600 % | <150 - ngratlng — 1/2 1
E |\ N 11
3. \ L 14 1]
= N il |
[%4007-‘ 3\ 13 e 1
T % LT 1]
\\\\ 12077 fmembrane — 3/4 1
r K ‘\‘ A
200+ \\ \\‘\\ 1.1 i/ - I [ ! i
L S \0\ \ 01 0 2 03 0 4 05
L o, N, ~
L “y ::::5.\..\ — Z (lJm)
-----::-.-:r.'.f?_—_._M______ o
07 ------- -
0.1 0.2 0.3 0.4 05
z (um)

PosiTioN SENSOR

CasiMIR FOrcE

R = 50pum
period = 400 nm
depth = 1070 nm

Davids, Intravaia, Rosa, DD, PRA 82,0621 11 (2010)
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Casimir plasmonics

a 73
Single interface Antisymmetric

Symmetric
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Mode summation approach

An alternative approach to the scattering formulation is to compute the
Casimir energy as a sum over the zero-point energy of the EM in the
presence of boundaries

p7 p7k L—oo
~ v \ ~ v

Infinite zero point energy Setting the zero | ——

In the case of metallic plates described by the plasma model

\k , p, L—o0
TV ~ -

Plasmonic contribution (Epi)  Photonic contribution (Epn)

/L[W]:l }_> E = ZZ[C&M_—FW]i_)OO —|—Z [pr]
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Surface plasmons interaction

Single interface [ Antisymmetric )
Surface plasmons are evanescent modes of the >§ff\ a ¢
EM field associated with electronic density 1 - 11\
oscillations at the metal-vacuum interface. | == R
-
% 1
; 1 . f

\ Symmetric )

When the tails of the evanescent fields overlap, - [k]><: w k]
the two surface plasmons hybridize v w_ (K]

At short distances the Casimir energy is given by the shift in the zero-
point energy of the surface plasmons due to their Coulomb (electrostatic)
interaction

PPk [(hwy hw_ _hwg, heam? A
E.s‘[) — .4 ( P ¢ + P e p [ — — ——‘)
(2m)2\ 2 ’ 2 580\, L2

—
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Mode spectrum in a cavity

l\ler‘

= 2.

k

w++w ]

~"

Plasmonic contribution (E,;)

-
—— e e -

Bulk modes

o[k]/wp
o
o

e TE photonic modes

===- Perfect mirrors modes

0 0.2 0.4 0.6 0.8 1 1.2
clk]/m,

All the TE-modes belong to the propagative sector

They differ from the perfect mirrors modes because
of the dephasing due to the non perfect reflection
coefficient.

53d)>)

Pa L—oo

~

Photonic contribution (E,p)

== TM photonic modes

e TM plasmonic modes

=== Perfect mirror modes

0 0.2 0.4 0.6 0.8 1 1.2
clkl/o,

TM-modes propagative modes look qualitatively like TE
modes.

There are only two evanescent modes.They are the
generalization to all distances of the coupled plasmon
modes.
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Plasmonic-photonic contributions

0.5¢ /w
0

-0.5}

Lifshitz = Red + Blue

0 0.1 0.2 0.3 0.4 0.5
L/

* At short distance the plasmonic contribution dominates and is attractive

* At large distance the two contributions are opposite in sign and balance

Can one control the Casimir force by changing
the balance of the two contributions!?
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Grating nanostructures

Metallic uatinb

|
At

MEMS
oscillator

z

electrode electrode

Grating

B
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Experimental set-up

° w p
@ Torsional balance set-up S S
i h ‘
salabebal .

Q@ Metallic sphere
R =150 pm

MEMS
oscillator

Y B

electrode

@ Sputtering and electroplating | uiform S~ ~
100

e : =

Q@ Metallic nano gratings

w,p, h =~ 100 nm ;

Grating

: 400nm

nm
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Strong force reduction

Q@ Gratings with similar filling factor A F .
have similar force reduction 1.00 | -

: : 5 p w h

@ Strong force reduction with respect to . 250 9 216

300 100 280
the standard plane-sphere geometry 4 . 300 116 214
075 b « 300 130 480
. i . 600 110 500
@ Results independent of fab method

800 150 500
* Unstructured sample

T |
Q. .
30.50 * -
Q :
i
3 .
s filling factor
0.25 Fo A
e p '
Sample 1 (250/90/216) [‘f -, "T.‘..
104ﬁ 1 A A A A L A A A A L A A A A ) A A :{.
200 400 600 800 1000 0.00
200 400 600 800 1000
d(nm)

d (nm)
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Modeling and simulation

@ Use of standard PFA to treat the sphere’s curvature
Fi,~2rRP);  d/R<6x1073
@ Exact computation of the plane-grating pressure Ppg

Scattering approach + modal expansions

e
E.(x,y : (s,9) :
x (T, _ N7 Ay D g o)Ay ;
Hz(at,y) ; v s Ty ]

Hﬂ?(xay) 7 7

Analytical expressions for eigenvectors
Transcendental equation for eigenvalues —

0 = D®(n) = — cos(aop) + cos(p;/7) cos(pan/1 — e(i€) — 1]€2)

1 \/n—e —1] 0-'»8)06)\/77
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Reflection matrices

[kz:()]

(ee)
00

R,

e-polarization (first 7 £,°s)

05
kx/(/p)

h-polarization (first 7 &,,°s)

1.0}

20
kz/ kO

0'5kx

0.0}
\ Gratin
0.2} & \
~0.4
u:r’—‘/'(((m};
—0.6 e
= —---:::::555,—:.5‘::—:::—— 0.4}
—0.8f JIIE oAt \ \
= Plane -Grating
0.0 0.2 0.4 0.6 0.8 1.0 00 05 0.2 0.6 0.8 1.0
kx/(7/p) kx/(mt/p)
(hh)
R P

[/(7/p)
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Normalizing to PFA for grating

P;f)gFA(d) = [Ppp(d) + (1 — f)Ppp(d + 1)

1.0 R AT
Vo, VT
‘.};'..'.e.s % 2.
0.5 TN Small separations: PFA underestimates the
< 3B total pressure.
o R
o 0.0 £ -,._:..._'
o p=250nm, w=90nm, h=216nm ey
0.5 p=300nm, w=116nm; h=214nm * Large separations: PFA overestimates the
o (Similar filling factors) o Haa pressure.
f1=0360 fi = 0.387 Pressure is going to zero faster than d-*
200 300 500 700 1000

Distance(nm)

@ Strong suppression of the Casimir force
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Open problem

1.4l 1 Numerical crosschecks
:,7< — \\\\\ EMA ] show that the theory is
3 \ b . . o
_ > Y —— EM ] accurate within few %
/ QE*.{: 7<\\
% .. N\
Z g& Double checks on
T Pt the experiment
0.4l : >.'; ™ show no apparent
0.2} 35
o.ol 2ol '
100 200 500 1000 2000 5000
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Experiment/theory discrepancy: open problem in Casimir physics
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Final comments

Q@ Quantum vacuum fluctuations induce macroscopic effects

@ Casimir forces are one example of fluctuation-induced interactions

@ Can be tailored by geometry, material composition, and temperature
- Observation of thermal corrections to the Casimir force

- Strong Casimir force reduction using metallic nano-gratings

@ There are still open problems in Casimir physics, e.g. how to obtain
measurable force repulsion between vacuum-separated objects.
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